Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(12): eadd8162, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947608

RESUMO

The development of neural interfaces with superior biocompatibility and improved tissue integration is vital for treating and restoring neurological functions in the nervous system. A critical factor is to increase the resolution for mapping neuronal inputs onto implants. For this purpose, we have developed a new category of neural interface comprising induced pluripotent stem cell (iPSC)-derived myocytes as biological targets for peripheral nerve inputs that are grafted onto a flexible electrode arrays. We show long-term survival and functional integration of a biohybrid device carrying human iPSC-derived cells with the forearm nerve bundle of freely moving rats, following 4 weeks of implantation. By improving the tissue-electronics interface with an intermediate cell layer, we have demonstrated enhanced resolution and electrical recording in vivo as a first step toward restorative therapies using regenerative bioelectronics.


Assuntos
Neurônios , Nervos Periféricos , Ratos , Humanos , Animais , Eletrodos , Regeneração Nervosa
2.
Mater Horiz ; 9(6): 1727-1734, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35474130

RESUMO

New fabrication approaches for mechanically flexible implants hold the key to advancing the applications of neuroengineering in fundamental neuroscience and clinic. By combining the high precision of thin film microfabrication with the versatility of additive manufacturing, we demonstrate a straight-forward approach for the prototyping of intracranial implants with electrode arrays and microfluidic channels. We show that the implant can modulate neuronal activity in the hippocampus through localized drug delivery, while simultaneously recording brain activity by its electrodes. Moreover, good implant stability and minimal tissue response are seen one-week post-implantation. Our work shows the potential of hybrid fabrication combining different manufacturing techniques in neurotechnology and paves the way for a new approach to the development of multimodal implants.


Assuntos
Fenômenos Eletrofisiológicos , Neurociências , Eletrofisiologia Cardíaca , Microtecnologia , Próteses e Implantes
3.
Biosens Bioelectron ; 195: 113664, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34624799

RESUMO

When it comes to detecting volatile chemicals, biological olfactory systems far outperform all artificial chemical detection devices in their versatility, speed, and specificity. Consequently, the use of trained animals for chemical detection in security, defense, healthcare, agriculture, and other applications has grown astronomically. However, the use of animals in this capacity requires extensive training and behavior-based communication. Here we propose an alternative strategy, a bio-electronic nose, that capitalizes on the superior capability of the mammalian olfactory system, but bypasses behavioral output by reading olfactory information directly from the brain. We engineered a brain-computer interface that captures neuronal signals from an early stage of olfactory processing in awake mice combined with machine learning techniques to form a sensitive and selective chemical detector. We chronically implanted a grid electrode array on the surface of the mouse olfactory bulb and systematically recorded responses to a large battery of odorants and odorant mixtures across a wide range of concentrations. The bio-electronic nose has a comparable sensitivity to the trained animal and can detect odors on a variable background. We also introduce a novel genetic engineering approach that modifies the relative abundance of particular olfactory receptors in order to improve the sensitivity of our bio-electronic nose for specific chemical targets. Our recordings were stable over months, providing evidence for robust and stable decoding over time. The system also works in freely moving animals, allowing chemical detection to occur in real-world environments. Our bio-electronic nose outperforms current methods in terms of its stability, specificity, and versatility, setting a new standard for chemical detection.


Assuntos
Técnicas Biossensoriais , Interfaces Cérebro-Computador , Neurônios Receptores Olfatórios , Animais , Camundongos , Odorantes , Bulbo Olfatório , Olfato
4.
Sci Adv ; 7(26)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34172452

RESUMO

Spinal cord stimulation is one of the oldest and most established neuromodulation therapies. However, today, clinicians need to choose between bulky paddle-type devices, requiring invasive surgery under general anesthetic, and percutaneous lead-type devices, which can be implanted via simple needle puncture under local anesthetic but offer clinical drawbacks when compared with paddle devices. By applying photo- and soft lithography fabrication, we have developed a device that features thin, flexible electronics and integrated fluidic channels. This device can be rolled up into the shape of a standard percutaneous needle then implanted on the site of interest before being expanded in situ, unfurling into its paddle-type conformation. The device and implantation procedure have been validated in vitro and on human cadaver models. This device paves the way for shape-changing bioelectronic devices that offer a large footprint for sensing or stimulation but are implanted in patients percutaneously in a minimally invasive fashion.

5.
Adv Sci (Weinh) ; 8(13): 2004434, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36246164

RESUMO

Advanced optical imaging techniques address important biological questions in neuroscience, where structures such as synapses are below the resolution limit of a conventional microscope. At the same time, microelectrode arrays (MEAs) are indispensable in understanding the language of neurons. Here, the authors show transparent MEAs capable of recording action potentials from neurons and compatible with advanced microscopy. The electrodes are made of the conducting polymer poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) and are patterned by optical lithography, ensuring scalable fabrication with good control over device parameters. A thickness of 380 nm ensures low enough impedance and >75% transparency throughout the visible part of the spectrum making them suitable for artefact-free recording in the presence of laser illumination. Using primary neuronal cells, the arrays record single units from multiple nearby sources with a signal-to-noise ratio of 7.7 (17.7 dB). Additionally, it is possible to perform calcium (Ca2+) imaging, a measure of neuronal activity, using the novel transparent electrodes. Different biomarkers are imaged through the electrodes using conventional and super-resolution microscopy (SRM), showing no qualitative differences compared to glass substrates. These transparent MEAs pave the way for harnessing the synergy between the superior temporal resolution of electrophysiology and the selectivity and high spatial resolution of optical imaging.


Assuntos
Fenômenos Eletrofisiológicos , Microscopia , Eletrofisiologia Cardíaca , Microeletrodos , Polímeros/química
6.
Adv Mater ; 32(15): e1903182, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31517403

RESUMO

The development of electronics capable of interfacing with the nervous system is a rapidly advancing field with applications in basic science and clinical translation. Devices containing arrays of electrodes can be used in the study of cells grown in culture or can be implanted into damaged or dysfunctional tissue to restore normal function. While devices are typically designed and used exclusively for one of these two purposes, there have been increasing efforts in developing implantable electrode arrays capable of housing cultured cells, referred to as biohybrid implants. Once implanted, the cells within these implants integrate into the tissue, serving as a mediator of the electrode-tissue interface. This biological component offers unique advantages to these implant designs, providing better tissue integration and potentially long-term stability. Herein, an overview of current research into biohybrid devices, as well as the historical background that led to their development are provided, based on the host anatomical location for which they are designed (CNS, PNS, or special senses). Finally, a summary of the key challenges of this technology and potential future research directions are presented.


Assuntos
Microfluídica/métodos , Neurônios/fisiologia , Animais , Implante Coclear , Eletrodos Implantados , Humanos , Análise em Microsséries , Medicina Regenerativa , Transplante de Células-Tronco , Engenharia Tecidual
7.
J Neural Eng ; 15(6): 065001, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30132444

RESUMO

OBJECTIVE: Neural electrophysiology is often conducted with traditional, rigid depth probes. The mechanical mismatch between these probes and soft brain tissue is unfavorable for tissue interfacing. Making probes compliant can improve biocompatibility, but as a consequence, they become more difficult to insert into the brain. Therefore, new methods for inserting compliant neural probes must be developed. APPROACH: Here, we present a new bioresorbable shuttle based on the hydrolytically degradable poly(vinyl alcohol) (PVA) and poly(lactic-co-glycolic acid) (PLGA). We show how to fabricate the PVA/PLGA shuttles on flexible and thin parylene probes. The method consists of PDMS molding used to fabricate a PVA shuttle aligned with the probe and to also impart a sharp tip necessary for piercing brain tissue. The PVA shuttle is then dip-coated with PLGA to create a bi-layered shuttle. MAIN RESULTS: While single layered PVA shuttles are able to penetrate agarose brain models, only limited depths were achieved and repositioning was not possible due to the fast degradation. We demonstrate that a bilayered approach incorporating a slower dissolving PLGA layer prolongs degradation and enables facile insertion for at least several millimeters depth. Impedances of electrodes before and after shuttle preparation were characterized and showed that careful deposition of PLGA is required to maintain low impedance. Facilitated by the shuttles, compliant parylene probes were also successfully implanted into anaesthetized mice and enabled the recording of high quality local field potentials. SIGNIFICANCE: This work thereby presents a solution towards addressing a key challenge of implanting compliant neural probes using a two polymer system. PVA and PLGA are polymers with properties ideal for translation: commercially available, biocompatible with FDA-approved uses and bioresorbable. By presenting new ways to implant compliant neural probes, we can begin to fully evaluate their chronic biocompatibility and performance compared to traditional, rigid electronics.


Assuntos
Materiais Biocompatíveis , Eletrodos Implantados , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Álcool de Polivinil/química , Implantes Absorvíveis , Animais , Encéfalo , Impedância Elétrica , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Sci Adv ; 4(7): eaar2904, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30035216

RESUMO

Wearable biosensors have emerged as an alternative evolutionary development in the field of healthcare technology due to their potential to change conventional medical diagnostics and health monitoring. However, a number of critical technological challenges including selectivity, stability of (bio)recognition, efficient sample handling, invasiveness, and mechanical compliance to increase user comfort must still be overcome to successfully bring devices closer to commercial applications. We introduce the integration of an electrochemical transistor and a tailor-made synthetic and biomimetic polymeric membrane, which acts as a molecular memory layer facilitating the stable and selective molecular recognition of the human stress hormone cortisol. The sensor and a laser-patterned microcapillary channel array are integrated in a wearable sweat diagnostics platform, providing accurate sweat acquisition and precise sample delivery to the sensor interface. The integrated devices were successfully used with both ex situ methods using skin-like microfluidics and on human subjects with on-body real-sample analysis using a wearable sensor assembly.


Assuntos
Técnicas Biossensoriais/métodos , Hidrocortisona/análise , Nanoporos , Dispositivos Eletrônicos Vestíveis , Materiais Biomiméticos/química , Técnicas Biossensoriais/instrumentação , Humanos , Microfluídica , Impressão Molecular , Polímeros/química , Suor/metabolismo , Transistores Eletrônicos
9.
Adv Mater ; 29(27)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28503731

RESUMO

Implantable devices offer an alternative to systemic delivery of drugs for the treatment of neurological disorders. A microfluidic ion pump (µFIP), capable of delivering a drug without the solvent through electrophoresis, is developed. The device is characterized in vitro by delivering γ-amino butyric acid to a target solution, and demonstrates low-voltage operation, high drug-delivery capacity, and high ON/OFF ratio. It is also demonstrated that the device is suitable for cortical delivery in vivo by manipulating the local ion concentration in an animal model and altering neural behavior. These results show that µFIPs represent a significant step forward toward the development of implantable drug-delivery systems.


Assuntos
Microfluídica , Animais , Sistemas de Liberação de Medicamentos , Eletroforese , Bombas de Íon , Ácido gama-Aminobutírico
10.
Microsyst Nanoeng ; 3: 17028, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31057869

RESUMO

Future drug discovery and toxicology testing could benefit significantly from more predictive and multi-parametric readouts from in vitro models. Despite the recent advances in the field of microfluidics, and more recently organ-on-a-chip technology, there is still a high demand for real-time monitoring systems that can be readily embedded with microfluidics. In addition, multi-parametric monitoring is essential to improve the predictive quality of the data used to inform clinical studies that follow. Here we present a microfluidic platform integrated with in-line electronic sensors based on the organic electrochemical transistor. Our goals are two-fold, first to generate a platform to host cells in a more physiologically relevant environment (using physiologically relevant fluid shear stress (FSS)) and second to show efficient integration of multiple different methods for assessing cell morphology, differentiation, and integrity. These include optical imaging, impedance monitoring, metabolite sensing, and a wound-healing assay. We illustrate the versatility of this multi-parametric monitoring in giving us increased confidence to validate the improved differentiation of cells toward a physiological profile under FSS, thus yielding more accurate data when used to assess the effect of drugs or toxins. Overall, this platform will enable high-content screening for in vitro drug discovery and toxicology testing and bridges the existing gap in the integration of in-line sensors in microfluidic devices.

11.
Adv Healthc Mater ; 5(17): 2295-302, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27385673

RESUMO

A compact multianalyte biosensing platform is reported, composed of an organic electrochemical transistor (OECT) microarray integrated with a pumpless "finger-powered" microfluidic, for quantitative screening of glucose, lactate, and cholesterol levels. A biofunctionalization method is designed, which provides selectivity towards specific metabolites as well as minimization of any background interference. In addition, a simple method is developed to facilitate multi-analyte sensing and avoid electrical crosstalk between the different transistors by electrically isolating the individual devices. The resulting biosensing platform, verified using human samples, offers the possibility to be used in easy-to-obtain biofluids with low abundance metabolites, such as saliva. Based on our proposed method, other types of enzymatic biosensors can be integrated into the array to achieve multiplexed, noninvasive, personalized point-of-care diagnostics.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Dedos , Dispositivos Lab-On-A-Chip , Saliva/metabolismo , Transistores Eletrônicos , Feminino , Humanos , Masculino
12.
Anal Chem ; 87(15): 7763-70, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26070023

RESUMO

This work presents the design, fabrication, and characterization of a robust 3D printed microfluidic analysis system that integrates with FDA-approved clinical microdialysis probes for continuous monitoring of human tissue metabolite levels. The microfluidic device incorporates removable needle type integrated biosensors for glucose and lactate, which are optimized for high tissue concentrations, housed in novel 3D printed electrode holders. A soft compressible 3D printed elastomer at the base of the holder ensures a good seal with the microfluidic chip. Optimization of the channel size significantly improves the response time of the sensor. As a proof-of-concept study, our microfluidic device was coupled to lab-built wireless potentiostats and used to monitor real-time subcutaneous glucose and lactate levels in cyclists undergoing a training regime.


Assuntos
Técnicas Biossensoriais , Microdiálise , Técnicas Analíticas Microfluídicas/instrumentação , Monitorização Fisiológica/instrumentação , Impressão Tridimensional , Eletrodos , Glucose/análise , Humanos , Ácido Láctico/análise
13.
Anal Chem ; 86(19): 9554-62, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25158126

RESUMO

In this work, an Android application for measurement of nitrite concentration and pH determination in combination with a low-cost paper-based microfluidic device is presented. The application uses seven sensing areas, containing the corresponding immobilized reagents, to produce selective color changes when a sample solution is placed in the sampling area. Under controlled conditions of light, using the flash of the smartphone as a light source, the image captured with the built-in camera is processed using a customized algorithm for multidetection of the colored sensing areas. The developed image-processing allows reducing the influence of the light source and the positioning of the microfluidic device in the picture. Then, the H (hue) and S (saturation) coordinates of the HSV color space are extracted and related to pH and nitrite concentration, respectively. A complete characterization of the sensing elements has been carried out as well as a full description of the image analysis for detection. The results show good use of a mobile phone as an analytical instrument. For the pH, the resolution obtained is 0.04 units of pH, 0.09 of accuracy, and a mean squared error of 0.167. With regard to nitrite, 0.51% at 4.0 mg L(-1) of resolution and 0.52 mg L(-1) as the limit of detection was achieved.


Assuntos
Telefone Celular , Colorimetria/métodos , Concentração de Íons de Hidrogênio , Microfluídica/instrumentação , Nitritos/análise , Papel
14.
Lab Chip ; 14(18): 3530-8, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25019339

RESUMO

This paper reports for the first time the use of a cross-linked poly(N-isopropylacrylamide) ionogel encapsulating the ionic liquid 1-ethyl-3-methylimidazolium ethyl sulphate as a thermoresponsive and modular microfluidic valve. The ionogel presents superior actuation behaviour to its equivalent hydrogel. Ionogel swelling and shrinking mechanisms and kinetics are investigated as well as the performance of the ionogel when integrated as a valve in a microfluidic device. The modular microfluidic valve demonstrates fully a reversible on-off behaviour without failure for up to eight actuation cycles and a pressure resistance of 1100 mbar.

15.
Phys Chem Chem Phys ; 16(5): 1841-9, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24323076

RESUMO

This paper presents an extended study on the ion effects of a series of biocompatible hydrated choline based ionic liquids (ILs) on lactate oxidase (LOx), an important enzyme in biosensing technology for the in vitro detection of lactic acid. Secondary structural analysis revealed changes in the protein conformation in hydrated ILs, while thermal unfolding/aggregation dynamics showed different profiles in the presence or absence of ILs. Moreover, LOx thermally denaturised at 90 °C showed residual activity in the presence of chloride and dihydrogen phosphate anions. Kinetic and lifetime studies were also performed, providing a better understanding of the ion effects of ILs on the biocatalytic activity of the enzyme.


Assuntos
Técnicas Biossensoriais , Colina/química , Líquidos Iônicos/química , Oxigenases de Função Mista/química , Água/química , Materiais Biocompatíveis/química , Íons , Ácido Láctico/análise , Oxigenases de Função Mista/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...